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Abstract. Watershed hydrologic and fate-and-
transport models are widely used to forecast water quanti-
ty and quality responses to alternative land use and cli-
mate change scenarios. The ability of such tools to fore-
cast changes in ecosystem services with reasonable accu-
racy depends on calibrating reliable simulations of stream-
flow, which in turn require accurate climatic forcing data.
Precipitation is widely acknowledged to be the largest
source of uncertainty in watershed modeling. Most water-
shed models are designed to easily incorporate publicly-
available precipitation data from rain gauges (e.g., data
provided by the National Climatic Data Center), but sev-
eral additional data products from ground-based radar and
satellite-based sensors are now available and can poten-
tially be used to generate more precise, spatially-explicit
precipitation estimates. Here, we investigate whether the
use of higher-resolution Multisensor Precipitation Estima-
tor (MPE, also known as Stage IV NEXRAD) data can
improve the accuracy of daily streamflow simulations us-
ing the Soil and Water Assessment Tool (SWAT) water-
shed hydrology model. Simulated vs. observed stream-
flow and model calibrations are compared for two Pied-
mont sub-basins of the Neuse River in North Carolina (21
and 203 km? watershed area) for an 8 year simulation pe-
riod (January 1, 2002 to August 31, 2010). MPE simula-
tions led to more accurate simulations of daily streamflow
magnitude and frequency measures than gauge data, and
differences were more pronounced in the smaller water-
shed. Compared with USGS-observed flows, MPE simu-
lations produced R? values of 0.64 and 0.54 for the larger
and smaller watershed, respectively, while gauge data
produced R? values of 0.19 in both watersheds. Nash-
Sutcliffe Efficiency and other goodness-of-fit indices also
showed much better simulations associated with MPE
data. Additionally, the temporal structure of MPE-
simulated streamflows more closely approximated that of
the observed streamflows. These results are likely ex-
tendable to the Piedmont of the broader southeastern U.S.
Ongoing research on this topic investigates additional spa-
tial and temporal scales, as well as additional precipitation
data types.

INTRODUCTION AND BACKGROUND

Simulation of streamflow, sediment, and dis-
solved constituents requires climatic forcing data. Tem-
perature can be reasonably estimated for hydrologic mod-
eling from a sparse network of stations within and sur-
rounding the study watershed (Attorre et al., 2007).
However, accurate representation of precipitation spatial
and temporal variability from available resources has
proven to be a challenge for hydrologic modeling. Failure
to incorporate such variability potentially introduces large
amounts of uncertainty to hydrologic and fate-and-
transport modeling efforts (Jordan, 2000; Andréassian et
al., 2001; Schuurmans and Bierkens, 2007; Villarni et al.,
2008).

There are two predominant approaches to evaluat-
ing precipitation data sources. In the first approach, inter-
polations or area averages from a network of precipitation
gauges is treated as the “actual” precipitation as a basis of
comparison for other sources of precipitation data (e.g.,
sparser gauge networks, radar, satellite). In the absence of
a very dense network of rain gauges, it is inappropriate to
treat any rainfall data source as the actual precipitation,
because of the known uncertainty of all available data
types (Schuurmans and Bierkens, 2007; Villarni et al.,
2009; Habib et al., 2009; Mandapaka et al., 2009). Be-
cause of this, many studies have adopted an alternative
approach using streamflow simulations from a watershed
model as an independent assessment of the precipitation
data accuracy (e.g., Borga, 2002; Su et al., 2008; Schuur-
mans and Bierkens, 2007; Tobin and Bennett, 2007;
Starks and Moriasi, 2009). In this approach, the dispari-
ties between streamflow simulations are attributed to dif-
ferences in precipitation data accuracy. This technique is
especially appropriate for studies whose objective is to
evaluate the potential of various precipitation data sources
as forcing data for hydrologic modeling and is employed
in this study.

Recent studies evaluating and comparing precipi-
tation data sources have shown mixed results, suggesting
that there is no universally optimal precipitation data
source for hydrologic modeling.  Hossain et al. (2004)
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showed that the uncertainty of MPE and gauge data was
similar for storm events in a 116 km® mountainous catch-
ment. Similarly, rain gauge and satellite rainfall data were
shown to give very similar storm totals for an extreme
event in Vietnam (Valeriano et al., 2009). MPE data were
shown to have a conditional bias when compared against a
dense network of precipitation gauges, where low-
intensity events were overestimated and high-intensity
events were underestimated in southern Louisiana (Habib
et al., 2009). In that study, the relationship between MPE
and gauge data demonstrated significant scatter, particu-
larly during low-intensity events.

Based on the results of these studies, there is rea-
son to believe that there may be spatial scale dependencies
for the accuracy of these data types. While several studies
have demonstrated scale dependencies of precipitation
data accuracy (e.g., Villarni et al., 2008), no known stud-
ies explicitly address these scale issues in a comparative
framework incorporating multiple precipitation data types.
There may be thresholds of optimal applicability of these
various data types, and knowledge of such thresholds is
critical for reducing uncertainty in hydrologic and fate-
and-transport modeling efforts. As various landscape at-
tributes are very important to the partitioning of overland
flow, infiltration, and recharge, inaccurate spatial distribu-
tion of rainfall may lead to erroneous streamflow simula-
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tions. This is a particular concern in fate-and-transport
modeling (Das et al., 2008).

Presented here are the prelimary results of re-
search that evaluates streamflow simulations using precip-
itation data from multiple sources, at two spatial scales of
watershed hydrologic model operation. The objective of
these comparisons was to determine whether higher reso-
lution precipitation data produces superior streamflow
simulations in the Piedmont, and, if so, if these improve-
ments in streamflow resolution are scale-dependent. Two
types of precipitation data are compared in this study: 1)
Gauge data from the National Climate Data Center
(NCDC) and North Carolina network, and 2) Multisensor
Precipitation Estimate (MPE). Gauge data are measure-
ments of precipitation depth collected in a rain gauge op-
erated and maintained by the National Weather Service or
by cooperative institutions and agencies. Rainfall totals
measured by these gauges represent the near-actual
amount of rainfall collected at the scale of a localized
point, but the ground-based gauge networks tend to be
relatively sparse. MPE data are doppler radar precipita-
tion data (known as both NEXRAD and WSR-88D) that
have been adjusted based on gauge data from the highest
accuracy precipitation stations. These data are available
in grid format, with total precipitation reported for each



NEXRAD pixel (4 x 4 km), resulting in much higher spa-
tial resolution than available for gauges (Figure 1).

METHODS

This study includes two sub basins of the Neuse
River watershed in North Carolina, Mountain Creek (21
km?) and Little River (203 km?). Both watersheds are lo-
cated in the Piedmont physiographic province, and are
characterized by relatively low relief and moderately dis-
turbed land use (Figure 1).

The Soil and Water Assessment Tool (SWAT,;
(Gassman et al., 2007) was used to simulate daily stream-
flow using both precipitation inputs for Mountain Creek
and Little River (Figure 1), for which streamflow is
gauged by the U.S. Geological Survey (USGS) during the
entire study period. Standard data requirements for
SWAT include temperature and precipitation time series
data, as well as spatial coverages of topography, soils and
land cover. In order to compare streamflow simulations
using the two separate precipitation data types, all other
SWAT inputs were identical during model runs. A 10 m
digital elevation model (DEM), 2009 Cropland Data Layer
(CDL) 30 m land cover data, and SSURGO digital county
soil data were obtained from the Geospatial Data Gate-
way (http://datagateway.nrcs.usda.gov/). Daily maximum
and minimum temperature data were obtained from the
National Climatic Data Center (NCDC,
http://www.ncdc.noaa.gov/oa/ncde.html) for all stations
active in the upper Neuse during the study period. MPE
data were obtained from the Earth Observing Laboratory
(http://data.eol.ucar.edu/). Additional meteorological pa-
rameters (wind speed and relative humidity) were simulat-
ed using SWAT’s weather generator.

For both temperature and precipitation data,
gauging stations missing > 10% of observations during the
study period were not included. For the stations that were
missing < 10% of observations, missing values were filled
from the nearest station with available data. SWAT was
designed to incorporate rainfall data in time series form,
and spatially associated with point stations (as in standard
rain gauge data). It was thus necessary to manipulate the
MPE data format for incorporation into the model: After
obtaining daily MPE grids in GRIB format, the files were
converted from GRIB to NetCDF format using the free
“degrib” program available from NOAA
(http://www.nws.noaa.gov/mdl/degrib/). A program was
written in R statistical software to clip the MPE grid by
the watershed boundary (including a 5 km buffer) and
create a time series of daily precipitation data for each
individual grid cell in the study area. The coordinates of
the centroid of each cell were treated as the point associat-
ed with each time series, meaning that SWAT incorpo-
rated the MPE data as though there were a gauging station
in the center of each 4 x 4 km radar pixel.

ArcSWAT 2009 was used for watershed delinea-
tion and hydrologic response unit (HRU) definition. In
SWAT, the nearest station or radar cell centroid is as-
signed to a given sub-basin, and each daily precipitation
total is assumed to fall uniformly over the sub-basin. In
this study, watershed delineation was performed to
achieve an average sub-basin size of approximately 4 km?.
This ensured that information from each radar pixel and
available rain gauge were incorporated into the stream-
flow simulation. This resulted in four and 50 sub-basins
for Mountain Creek and Little River, respectively. HRU
definition included 5% thresholds for minimum coverage
of soil, slope, and land cover class, with all classes of wet-
land and urban land use retained. Calibration was per-
formed on the period 2002-2006, with the best calibration
parameters determined by the coefficient of determination
(R?), modified coefficient of determination (bR?), Nash-
Sutcliffe Efficiency (NSE), modified Nash-Sutcliffe Effi-
ciency (MNSE), mean error, root mean squared error, and
visual correspondence of simulated low and high flows
compared with the observed hydrograph (Krause et al.,
2005). Validation indices and precipitation data compari-
sons were based on simulations for the entire study period.
Calibrations targeted the most sensitive parameters for
each combination of data type and watershed, which in-
cluded indices related to curve number (CN2), baseflow
recession (Alpha_Bf), groundwater depth required for
return flow (GWQMN), and soil available water
(Sol_AWC).

Streamflow simulations generated by gauge and
MPE data were compared separately for each watershed.
Summary statistics and indices of low and high flows
were compared between observed flows and simulations
using both precipitation data types. Paired t-tests were
performed to evaluate significance of differences between
streamflows simulated with each data type, and between
simulated and observed flows. The temporal structures of
simulated and observed flows were examined, as stream-
flow temporal variability is related to the environmental
flows concept and bears important implications for water
supply, water quality, and habitat availability.

RESULTS AND DISCUSSION

MPE precipitation data produced more accurate
streamflow simulations than gauge data, by all standard
goodness of fit metrics in both watersheds (Table 1, Fig-
ure 2). Most notably, the MPE data produced strikingly
good fits with uncalibrated flows (R? 0.63 and 0.53, Nash-
Sutcliffe Efficiency 0.47 and 0.49). The gauge data tend-
ed to produce overestimates of streamflows. Improve-
ments from using higher-resolution precipitation data were
evident at



Flow (cms)

Flow {cms)

Tahle 1. Goodness of fit and ¥
USES NPE NCDC NPE NCDC NPE N
Meurtain Geek . 4 i e e
goodhess of fit sotistics
g - 0.63 o1 064 019 049 018
oy - 02 001 032 006 031 007
NashrSutdlife Efficiency - 047 = -038 059 014 046 ooe
rrod fied Nash-Sutdiffe = 0.37 008 040 027 034 ai1s
mean arror (bias) - 004 o1 003 002 001 00s
RVISE - 051 067 04s 06s 048 062
| flow descriptive statistics
mean flow 018 015 024 016 021 01s 023
medanflow 0.08 008 014 007 006 o0 a12
Sth percertileflow 001 001 001 <01 <001 <001 <001
S99th parcentile low 213 106 180 186 152 221 216
flowstandard deviation 0.7 0.28 050 042 046 056 048
s USES NPE NCDC NPE NCDC NPE NS
Little River . B
goodhess of fit Totistics
s - 053 018 054 019 054 020
5 - 024 oo 028 ons 029 as
Nash-Sutdiffe Efficency - 0.49 014 053 001 054 000
modfied Nash-Sutdiffe 3 038 020 039 031 038 019
mean aror (bias) = -0.59 0.26 055 -0.06 =021 036
RVEE - 407 607 391 566 ag1 560
| flow descriptive statistics
mean flow 216 157 241 161 209 179 230
danflowr 0.8s 083 132 072 059 (o111 102
Sth percertil eflow 001 0.04 0.04 003 001 003 003
S9th parcentile flow 242 241 208 166 178 168 ns
flowstandard deviation S.68 317 562 320 483 376 487
offit Ioulated using the GOF ge in Rf et al., 2005, Ac\. Geosdierces)

Al lowdesaiptive statistics are in n\‘id; “calibrated” period is 2002-2006, “entire” period is 2002-2010

le+2

le+l

le+0

le-1

Mountain Creek

1e-2
le3
104 1 —— Observed
MPE-simulated
NCDC-Simulated
1e-5 - T ~ - T -
& s
le+3
les+2 -
|
—— Observed
1e-d4 4 MPE-simulated
INCDC-Simulated
le-5 T T T T T T
& > a & & o >
& & f# x\f fﬂu & & RS & &

Figure 2: Simulated and observed streamflows



both watershed scales, but were more pronounced in the
ller watershed (Mountain Creek), than in the larger water-
shed (Little River). Further comparisons at additional
watershed scales will show whether there is consistent
scale-dependency for improved streamflow simulations
using higher-resolution precipitation data. To address this,
the precipitation comparison will be extended to two larg-
er watersheds in the Neuse River system: Neuse River
near Clayton (USGS 02087500, 2,979 km? and Neuse
River near Fort Barnwell (02091814, 10,100 kmz).

Paired t-tests indicated that differences between
all combinations of simulated and observed flows, as well
as all combinations of simulations from various data
sources, were statistically significant at the p<0.001 level.
The most striking aspect of these results is the dif-
ference between the observed flows and the uncal-
ibrated simulations with the two data types (Table
1). In all cases, the uncalibrated MPE flows pro-
duced much higher R? and NSE than even the cali-
brated gauge simulations. As more complex cali-
bration strategies are explored, it may prove that
gauge data can achieve similarly successful simu-
lations to the MPE data.

Spectral analysis showed that both data types
produced realistic periodic variation in streamflows, as
compared with observed flows (Figure 3). Streamflow

periodicity is of prime importance in environmental flows
management for ecosystem service protection (O’Keefe,
2009). These results suggest that capturing general pat-
terns of streamflow magnitude may be possible with
gauge data, to a greater extent than capturing the exact
flow timing necessary for model calibration. The partial
autocorrelation function (pacf) was used to determine the
extent of the lag within the Mountain Creek time series
(Figure 3a). The significant lag for the observed data is
strong for three days, and persists for up to five days,
whereas the significant lags for the gauge-simulated data
are rather uniformly strong for up to 11 days, and the lags
for the MPE-simulated data show significant lags through
one week. However, the calibration has been performed
using goodness of fit statistics for the flow magnitude and
not the temporal structure. Therefore, such differences
between the selected model and the observed data are pos-
sible. Overall pacf behavior suggests a smoothing effect
of the model when compared to the observed flow time
series, longer periods of self-similar flow regimes occur in
the simulated flows than in the observed data, but this ef-
fect is less noticeable in the MPE-simulated streamflows
than in the gauge-simulated flows. It may be possible to
design calibration diagnostic statistics that explicitly ac-
count for temporal structure to improve assessment end-
points consistent with the environmental flows concept.
We also performed a seasonal decomposition of a locally
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weighted scatterplot smoothing of the observed and mod-
eled time series. (Figure 3b). This yields a seasonal com-
ponent, a moving-average determined trend, and residuals
from the seasonal plus trend fit that represent irregular
components. These figures demonstrate reasonable simi-
larity between the time series signal of the observed time
series compared to both sets of the simulated data. The
seasonal decomposition shows stronger periodicity for the
observed data, however, the modeled time series do repro-
duce the main features of the trend rather well. The resid-
uals are much more variable for the observed time series
loess when compared to the model, demonstrating the
“smoothing” effect of the model compared to the observed
flow data.

CONCLUSIONS

The prelimary results of this multi-scale compari-
son of precipitation data sources in watershed modeling
show that MPE data generate more accurate streamflows
than gauge data. We interpret this difference to be due to
the much higher spatial resolution of the MPE data, as
opposed to error in the gauge data. Spectral characteris-
tics were reasonably represented by both data types, but
indicated an overall smoothing of temporal variability in
modeled streamflow, irrespective of precipitation data
type. Ongoing research will incorporate additional water-
shed sizes and precipitation data types, such as PRISM
(Daly et al., 2002) and the emergent, very high resolution
(1 x1 km) Q2 data (http://nmg.ou.edu/). Further research
will also investigate the role of data resolution and analy-
sis of all data types at varied simulation timesteps.
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