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Abstract. Watershed hydrologic and fate-and-

transport models are widely used to forecast water quanti-
ty and quality responses to alternative land use and cli-
mate change scenarios.  The ability of such tools to fore-
cast changes in ecosystem services with reasonable accu-
racy depends on calibrating reliable simulations of stream-
flow, which in turn require accurate climatic forcing data.  
Precipitation is widely acknowledged to be the largest 
source of uncertainty in watershed modeling.  Most water-
shed models are designed to easily incorporate publicly-
available precipitation data from rain gauges (e.g., data 
provided by the National Climatic Data Center), but sev-
eral additional data products from ground-based radar and 
satellite-based sensors are now available and can poten-
tially be used to generate more precise, spatially-explicit 
precipitation estimates.    Here, we investigate whether the 
use of higher-resolution Multisensor Precipitation Estima-
tor (MPE, also known as Stage IV NEXRAD) data can 
improve the accuracy of daily streamflow simulations us-
ing the Soil and Water Assessment Tool (SWAT) water-
shed hydrology model.  Simulated vs. observed stream-
flow and model calibrations are compared for two Pied-
mont sub-basins of the Neuse River in North Carolina (21 
and 203 km2 watershed area) for an 8 year simulation pe-
riod (January 1, 2002 to August 31, 2010). MPE simula-
tions led to more accurate simulations of daily streamflow 
magnitude and frequency measures than gauge data, and 
differences were more pronounced in the smaller water-
shed.  Compared with USGS-observed flows, MPE simu-
lations produced R2 values of 0.64 and 0.54 for the larger 
and smaller watershed, respectively, while gauge data 
produced R2 values of 0.19 in both watersheds.  Nash-
Sutcliffe Efficiency and other goodness-of-fit indices also 
showed much better simulations associated with MPE 
data. Additionally, the temporal structure of MPE-
simulated streamflows more closely approximated that of 
the observed streamflows.  These results are likely ex-
tendable to the Piedmont of the broader southeastern U.S. 
Ongoing research on this topic investigates additional spa-
tial and temporal scales, as well as additional precipitation 
data types. 

INTRODUCTION AND BACKGROUND 

Simulation of streamflow, sediment, and dis-
solved constituents requires climatic forcing data. Tem-
perature can be reasonably estimated for hydrologic mod-
eling from a sparse network of stations within and sur-
rounding the study watershed (Attorre et al., 2007).   
However, accurate representation of precipitation spatial 
and temporal variability from available resources has 
proven to be a challenge for hydrologic modeling.  Failure 
to incorporate such variability potentially introduces large 
amounts of uncertainty to hydrologic and fate-and-
transport modeling efforts (Jordan, 2000; Andréassian et 
al., 2001; Schuurmans and Bierkens, 2007; Villarni et al., 
2008).   

There are two predominant approaches to evaluat-
ing precipitation data sources.  In the first approach, inter-
polations or area averages from a network of precipitation 
gauges is treated as the “actual” precipitation as a basis of 
comparison for other sources of precipitation data (e.g., 
sparser gauge networks, radar, satellite).  In the absence of 
a very dense network of rain gauges, it is inappropriate to 
treat any rainfall data source as the actual precipitation, 
because of the known uncertainty of all available data 
types (Schuurmans and Bierkens, 2007; Villarni et al., 
2009; Habib et al., 2009; Mandapaka et al., 2009).  Be-
cause of this, many studies have adopted an alternative 
approach using streamflow simulations from a watershed 
model as an independent assessment of the precipitation 
data accuracy (e.g., Borga, 2002; Su et al., 2008; Schuur-
mans and Bierkens, 2007; Tobin and Bennett, 2007; 
Starks and Moriasi, 2009).  In this approach, the dispari-
ties between streamflow simulations are attributed to dif-
ferences in precipitation data accuracy.  This technique is 
especially appropriate for studies whose objective is to 
evaluate the potential of various precipitation data sources 
as forcing data for hydrologic modeling and is employed 
in this study.  

 
Recent studies evaluating and comparing precipi-

tation data sources have shown mixed results, suggesting 
that there is no universally optimal precipitation data 
source for hydrologic modeling.    Hossain et al. (2004) 
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NEXRAD pixel (4 x 4 km), resulting in much higher spa-
tial resolution than available for gauges (Figure 1).   
 

METHODS 
 

This study includes two sub basins of the Neuse 
River watershed in North Carolina, Mountain Creek (21 
km2) and Little River (203 km2). Both watersheds are lo-
cated in the Piedmont physiographic province, and are 
characterized by relatively low relief and moderately dis-
turbed land use (Figure 1).  

 The Soil and Water Assessment Tool (SWAT; 
(Gassman et al., 2007) was used to simulate daily stream-
flow using both precipitation inputs for Mountain Creek 
and Little River (Figure 1), for which streamflow is 
gauged by the U.S. Geological Survey (USGS) during the 
entire study period.  Standard data requirements for 
SWAT include temperature and precipitation time series 
data, as well as spatial coverages of topography, soils and 
land cover.  In order to compare streamflow simulations 
using the two separate precipitation data types, all other 
SWAT inputs were identical during model runs.  A 10 m 
digital elevation model (DEM), 2009 Cropland Data Layer 
(CDL) 30 m land cover data, and SSURGO digital county 
soil data  were obtained from the Geospatial Data Gate-
way (http://datagateway.nrcs.usda.gov/).  Daily maximum 
and minimum temperature data were obtained from the 
National Climatic Data Center (NCDC, 
http://www.ncdc.noaa.gov/oa/ncdc.html) for all stations 
active in the upper Neuse during the study period.  MPE 
data were obtained from the Earth Observing Laboratory 
(http://data.eol.ucar.edu/).  Additional meteorological pa-
rameters (wind speed and relative humidity) were simulat-
ed using SWAT’s weather generator. 
 For both temperature and precipitation data, 
gauging stations missing > 10% of observations during the 
study period were not included.  For the stations that were 
missing < 10% of observations, missing values were filled 
from the nearest station with available data. SWAT was 
designed to incorporate rainfall data in time series form, 
and spatially associated with point stations (as in standard 
rain gauge data).  It was thus necessary to manipulate the 
MPE data format for incorporation into the model:   After 
obtaining daily MPE grids in GRIB format, the files were 
converted from GRIB to NetCDF format using the free 
“degrib” program available from NOAA 
(http://www.nws.noaa.gov/mdl/degrib/).  A program was 
written in R statistical software to clip the MPE grid by 
the watershed boundary (including a 5 km buffer) and 
create a time series of daily precipitation data for each 
individual grid cell in the study area.  The coordinates of 
the centroid of each cell were treated as the point associat-
ed with each time series, meaning that SWAT incorpo-
rated the MPE data as though there were a gauging station 
in the center of each 4 x 4 km radar pixel.    

 ArcSWAT 2009 was used for watershed delinea-
tion and hydrologic response unit (HRU) definition.  In 
SWAT, the nearest station or radar cell centroid is as-
signed to a given sub-basin, and each daily precipitation 
total is assumed to fall uniformly over the sub-basin. In 
this study, watershed delineation was performed to 
achieve an average sub-basin size of approximately 4 km2.  
This ensured that information from each radar pixel and 
available rain gauge were incorporated into the stream-
flow simulation.  This resulted in four and 50 sub-basins 
for Mountain Creek and Little River, respectively. HRU 
definition included 5% thresholds for minimum coverage 
of soil, slope, and land cover class, with all classes of wet-
land and urban land use retained.   Calibration was per-
formed on the period 2002-2006, with the best calibration 
parameters determined by the coefficient of determination 
(R2), modified coefficient of determination (bR2), Nash-
Sutcliffe Efficiency (NSE), modified Nash-Sutcliffe Effi-
ciency (mNSE), mean error, root mean squared error, and 
visual correspondence of simulated low and high flows 
compared with the observed hydrograph (Krause et al., 
2005). Validation indices and precipitation data compari-
sons were based on simulations for the entire study period.  
Calibrations targeted the most sensitive parameters for 
each combination of data type and watershed, which in-
cluded indices related to curve number (CN2), baseflow 
recession (Alpha_Bf), groundwater depth required for 
return flow (GWQMN), and soil available water 
(Sol_AWC).  
 Streamflow simulations generated by gauge and 
MPE data were compared separately for each watershed.  
Summary statistics and indices of low and high flows 
were compared between observed flows and simulations 
using both precipitation data types.  Paired t-tests were 
performed to evaluate significance of differences between 
streamflows simulated with each data type, and between 
simulated and observed flows.  The temporal structures of 
simulated and observed flows were examined, as stream-
flow temporal variability is related to the environmental 
flows concept and bears important implications for water 
supply, water quality, and habitat availability.    
 

RESULTS AND DISCUSSION 
 
 MPE precipitation data produced more accurate 
streamflow simulations than gauge data, by all standard 
goodness of fit metrics in both watersheds (Table 1, Fig-
ure 2). Most notably, the MPE data produced strikingly 
good fits with uncalibrated flows (R2 0.63 and 0.53, Nash-
Sutcliffe Efficiency 0.47 and 0.49).  The gauge data tend-
ed to produce overestimates of streamflows.  Improve-
ments from using higher-resolution precipitation data were 
evident at  
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weighted scatterplot smoothing of the observed and mod-
eled time series. (Figure 3b).  This yields a seasonal com-
ponent, a moving-average determined trend, and residuals 
from the seasonal plus trend fit that represent irregular 
components.  These figures demonstrate reasonable simi-
larity between the time series signal of the observed time 
series compared to both sets of the simulated data.  The 
seasonal decomposition shows stronger periodicity for the 
observed data, however, the modeled time series do repro-
duce the main features of the trend rather well.  The resid-
uals are much more variable for the observed time series 
loess when compared to the model, demonstrating the 
“smoothing” effect of the model compared to the observed 
flow data.  
 

CONCLUSIONS 
 
 The prelimary results of this multi-scale compari-
son of precipitation data sources in watershed modeling 
show that MPE data generate more accurate streamflows 
than gauge data.  We interpret this difference to be due to 
the much higher spatial resolution of the MPE data, as 
opposed to error in the gauge data.  Spectral characteris-
tics were reasonably represented by both data types, but 
indicated an overall smoothing of temporal variability in 
modeled streamflow, irrespective of precipitation data 
type.  Ongoing research will incorporate additional water-
shed sizes and precipitation data types, such as PRISM 
(Daly et al., 2002) and the emergent, very high resolution 
(1 x1 km) Q2 data (http://nmq.ou.edu/).  Further research 
will also investigate the role of data resolution and analy-
sis of all data types at varied simulation timesteps. 
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