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Abstract The Apalachicola-Chattahoochee-Flint (ACF) 
River Basin supports a multipurpose river system, which 
straddles Georgia, Alabama, and Florida.  The Army 
Corps of Engineer’s management of the federal reservoir 
system has been under litigation between the three states 
and various stakeholders for more than 20 years. Among 
the difficulties in properly managing the river system is 
the uncertainty of future river inflows and the inability to 
properly forecast and plan for likely drought periods. In 
addition to the Corps’ need for reliable long-term flow 
forecasts for reservoir operation, the state of Georgia 
could use such forecast for properly managing off-stream 
water use when faced with probable droughts.  
 
This paper will develop an autoregressive inflow forecast 
model and evaluate the benefits of a multiple variable 
autoregressive model, which includes the ENSO index. 
The data that will be used is the unimpaired inflow da-
taset developed by the Corps and the historical ENSO 
index. The analysis will also measure how each forecasts 
compares monthly, and determine months in which fore-
casts are more useful.  

 
INTRODUCTION 

 
The operations of the Apalachicola-Chattahoochee-Flint 
(ACF) River Basin are dependent upon the inflows to the 
basin. This provides much uncertainty regarding expected 
operations, power generation, lake-levels, and contested 
state-line flows at the Georgia-Florida border. The Army 
Corps of Engineers operates the reservoir system and has 
developed a set of daily-unimpaired inflows from 1939-
2008 for each river reach in the basin. These unimpaired 
flows are labeled unimpaired as they are considered the 
best estimates of the natural flow that comes into the ba-
sin before being altered by reservoir operation, water use, 
and lake evaporation. They are calculated by taking 
measured flow gages and adding back the measured 
changes in storage in the major reservoirs, adding back 
the estimated evaporation from lake surfaces and adding 
back the estimated consumptive water use. This unim-
paired data can then be placed back into system reservoir 
models to see the effects of different operation alterna-
tives and water demands. In this sense, forecasted unim-

paired inflows can be input into the river basin models to 
properly forecast expected operations, power generation, 
lake-levels, and contested state-line flows. The models 
could also help formulate alternative operations based on 
forecasted conditions. Currently, no defined method is in 
use for a long-term flow forecast. Rather, the states and 
the Corps merely look at current conditions, the ENSO 
index and the precipitation forecasts of the Climate Pre-
diction Center (CPC) of the National Weather Service to 
get the best idea of likely inflows. This idea of likely in-
flows is not quantified and thus cannot be used in reser-
voir models for forecasting the river system conditions. 
The below map shows the reaches of the river system as 
well as the major reservoirs in the ACF river basin. 
 

 
Figure 1. Layout of ACF River Basin 
 
This paper seeks to evaluate the performance of an auto-
regressive model for the whole ACF system, and the sum 
inflows to the basin will be used in autoregressive model 



development.  This paper will determine the performance 
of an autoregressive model for 1-month, 3-month, and 6-
month forecasting as well as test the benefit of adding the 
ENSO index as an additional variable in the forecasting 
scheme. 
 

METHODOLOGY 
 

Using the Corps Unimpaired daily flow data each river 
reach is summed up and converted to a monthly time-
series in cubic feet per second. 
 
In developing an Autoregressive model, the first step is to 
evaluate the time-series data and determine how it needs 
to be transformed into a standard normal variable.  The 
below plots show the time-series of the observed data, the 
mean and standard deviation by month, and the histo-
gram. 
 
Error! Not a valid link. Figure 2. ACF River Historical 
monthly unimpaired inflows 
 
Error! Not a valid link. Figure 3. ACF River Historical 
unimpaired inflows monthly average and standard devia-
tion 
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Figure 4.  Histogram of ACF River Historical unimpaired 
inflows  
 
The observed flow appears to be log distributed, therefore 
the first step will be to take the log of each observation. 
This produces the following time series as well as a his-
togram that is closer to a normal distribution. 
Error! Not a valid link. Figure 5.  Log transformed un-
impaired inflows 
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Figure 6.  Histogram of Log transformed unimpaired in-
flows 
Since the observed data shows a seasonal pattern the 
monthly mean must be removed. The monthly mean of 
the log time series is plotted below. 
Error! Not a valid link. Figure 7.  Monthly mean of Log 
transformed data 
 
 Subtracting the monthly mean yields the following time-
series and histogram. 
Error! Not a valid link. Figure 8.  Log transformed data 
with mean removed 
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Figure 9.  Histogram of Log transformed data with mean 
removed 
 
The final step is to normalize the distribution so that it 
has a variance and standard deviation equal to one. This is 
done by dividing by the standard deviation of the zero 
mean Log flow which is plotted below. 
Error! Not a valid link. Figure 10.  Standard deviation of 
Log transformed data with mean removed 
 
Dividing by the Standard deviation finally results in the 
following time-series, which has a zero mean and a 



standard deviation equal to one. The final timeseries to be 
used in the forecasting process is plotted below along 
with a histogram that shows the timeseries to have a 
standard normal distribution. 
Error! Not a valid link. Figure 11.  ACF River Historical 
monthly flows as a standard normal variable with mean 
removed and unity variance 

-3 -2 -1 0 1 2 3 4
0

50

100

150

200

250

Zero Mean Unity Variance Log Observed Flow

N
um

be
r 

of
 M

on
th

s 
w

ith
 F

lo
w

 
Figure 12.  Histogram of ACF River Historical monthly 
flow as a standard normal variable with mean removed and 
unity variance  
 
The next step is to pick the proper type of autoregressive 
model based on the autocorrelation of the observed stand-
ard normalized data. The below plot shows how the lag 
correlation compares with an AR(1) model and an AR-
MA(1,1) model. The lag1 correlation was shown to equal 
0.68 while the lag2 correlation equals 0.54. 
Error! Not a valid link. 
Figure 13.  Autocorrelation of standard normal monthly 
unimpaired flows compared with 2 types of autoregressive 
models 
 
 The ARMA(1,1) model shows the best approximation 
of the observed autocorrelation. The observed data also 
indicates that ARMA(1,1) is a possibility as:  
 

)12( 112    
 
 
Therefore an ARMA(1,1) model will be chosen to 

complete the autoregressive modeling process. The AR-
MA(1,1) model takes the form: 

 

 
The parameters   and   were found by using the fol-

lowing formulas and solving iteratively. t and 1t are 

standard normal Gaussian white noise. 
 

 
The resulting parameters 1 = 0.0.230 and 1  = 
0.797 
 
The best possible forecast will be equivalent to the 
expected flow and simplifies to: 
 

 

where 11  kk   
 

This essentially means a 1-month forecast is the pre-
vious months flow times the lag1 correlation. In the event 
of zero correlation the flow forecast will be zero which 
means average for the zero mean time-series. A n-month 
forecast is the same but uses the lag-n correlation of the 
ARMA model.  

 
Since our observed data has been transformed into a 

standard normal variable, our model output needs to be 
transformed back into regular form. The steps laid out in 
the transformation process will be reversed such that first 
the results must be multiplied by the standard deviation, 
then the means added back, and then finally it must be 
reverse log transformed for the entire period 1939-2008. 
The forecasting process was repeated for a 3-month and 
6-month forecast and the results of each model will be 
shown in the Results Section of this paper.  

A multiple autoregressive model was considered using 
the ENSO index that is often deemed a good indicator of 
weather patterns in the Southeast US. A La Nina is often 
associated with dry and warm weather in the Southeast 
and used as predictor for possible drought. The ENSO 



time-series was transformed into a standard normal varia-
ble was done with the unimpaired inflows. The lag corre-
lation of the ENSO and the unimpaired inflow data is 
plotted in Figure 14. An ARMA(1,1) could not be fitted 
since the lag two correlation is greater than the lag one. 
The AR(1) model also does not properly model the long 
lag correlation. A more complicated AR(13) was devel-
oped to better fit the observed correlation better. Accord-
ing to Bras and Rodriguez-Iturbe care must be used when 
working with sample correlations for high lags. This 
model shows matches the observed correlation until lag 
13 and may be considered a better estimate than the 
AR(1) model. 
 

 The correlation does show as expected a certain dry-
ness associated with la Nina conditions but the correlation 
is very small. The ENSO may have a greater correlation 
with precipitation but this does not translate to correlation 
with stream flow due to the dynamics of the stream flow 
system. 
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Figure 14.  Lag correlation between inflows and ENSO  
index 
 
 

RESULTS 
 

After completing the ARMA(1,1) model for the entire 
data period of 1939-2008 a forecast for each month is 
compared with the observed data in Figures 15 and 16. 
These results reflect 1-month forecasts without the addi-
tion of the ENSO index data. 
Error! Not a valid link. Figure 15.  1-Month ARMA(1,1)  
and observed unimpaired flows 
Error! Not a valid link. Figure 16.  1-Month ARMA(1,1) 
and observed unimpaired flows 
 

One way to measure the goodness of the forecast is by 
determining the correlation between observed and simu-
lated. This is likely to be similar to the lag-1 correlation. 
The below plot in Figure 17 shows the monthly correla-
tion of the observed and simulated time-series. 

 
Error! Not a valid link. Figure 17.  1-Month AR-

MA(1,1)  and observed correlation 
 
The standard error of the observed and the forecasted 

(Figure 18) can be compared to determine how the fore-
casted data has become closer to the mean than the ob-
served and therefore has a lower standard deviation. 
Error! Not a valid link. 
Figure 18.  1-Month ARMA(1,1)  and observed standard 
deviation 

 
Next, the flow forecasting results using just the AR(13) 
ENSO index model were analyzed. The plots for these 
model runs are not shown; however, the results show that 
certain times of the year have a greater ENSO signal. The 
winter seems to have the greatest correlation while the 
spring appears to have zero correlation. Also due to the 
long lag in the AR(13) model, the correlation does not 
greatly decrease as the forecast length increases.  
 

Finally the two models were combined to see the ben-
efits of combining the two models. All results can per-
haps be best summarized in the following three graphs 
that compare the correlation performance for the three 
different models for the 1, 3 and 6-month forecast (Fig-
ures 19-21). These plots show that the ARMA(1,1) model 
consistently out performs the AR(13) and multiple varia-
ble model. Though the AR(13) model shows statistically 
significant correlation, it only takes away from the corre-
lation when included. One can also see that as the forecast 
length increases the ability of ARMA(1,1) to out perfume 
the other models diminishes. 
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 Figure 19.  1-Month Forecast correlation of three devel-
oped models. 
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 Figure 20.  3-Month Forecast correlation of three devel-
oped models. 
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 Figure 21.  6-Month Forecast correlation of three devel-
oped models. 

 
 

CONCLUSION 
 
The ACF River system shows to have an autocorrela-

tion lasting almost up to 6 months lag throughout all peri-
ods of the year. This correlation can be used for forecast-
ing with acceptable degree of uncertainty. While forecasts 
beyond 1 month carry a higher uncertainty, they still are 
the best indicators for future conditions. The ENSO index 
shows slight correlation for a long lag period with ACF 
flows. However, even after possibly over fitting the mod-
el to match this lag correlation, the ENSO index inclusion 
only hurt performance of the ARMA model. Future stud-
ies could include testing whether the ENSO AR(13) mod-
el has been over fit as well as determining a proper way 
to include the ENSO correlation  to improve the perfor-
mance of the ARMA(1,1) model. 
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